
mmap: Memory Mapped Files in R

Je�rey A. Ryan

August 1, 2011

Abstract

The mmap package o�ers a cross-platform interface for R to information that resides on disk. As
dataset grow, the �nite limits of random access memory constrain the the ability to process larger-than-
memory �les e�ciently. Memory mapped �les (mmap �les) leverage the operating system demand-based
paging infrastructure to move data from disk to memory as needed, and do it in a transparent and highly
optimized way. This package implements a simple low-level interface to the related system calls, as well
as provides a useful set of abstractions to make accessing data on disk consistent with R usage patterns.
This paper will explore the design and implementation of the mmap package, provide a comprehensive
look at its usage, and conclude with a look at some performance benchmarks and applications.

1 Background

As datasets of interest grow from megabytes to terabytes to petabytes, the limiting factor for processing
is often the availability of memory on a system. Even if memory is su�cient to hold an entire dataset,
it is usually only a subset of data that is needed at any given moment. In these instances it is bene�cial
to be able to only keep the data in memory that is needed at the time of the computation. Traditionally
this meant iterating through a large �le and reading chunks at a time, or utilizing a database system to
manage the process in an external process.

The downside to the above workaround for limited memory is that a deliberate e�ort by the user
must be made to manage the reading and removal of data so as to keep memory usage within the limits
of a given system. The system level mmap (MapViewOfFile on Windows) call is designed to make this
process easier and more e�cient, from both a coding standpoint as well as an execution one. In fact,
most modern database systems rely on a combination of mmap calls to make managing large data on
limited memory systems feasible.

To use mmap on large �les, it is helpful to understand what is happening internally at the C level.
Given a successful initialization call to mmap, a pointer is returned to a byte o�set of the opened �le,
typically the start of the �le. From this point onward, all references to this pointer result in a series of
bytes being read from disk into memory. The read and write operations are hidden from the developer
and are highly optimized to minimize seek and copying costs.

The mmap package for R provides this level of access by cleanly wrapping the underlying operating
system call. This minimal and direct API exposure allows for low-level bytes to be exposed to the
R session. As mapped �les can be shared among processes, this allows for a simple form of interpro-
cess communication (IPC) to be available between R processes as well as between R and other system
processes.

The mmap package also makes additional abstractions available to allow simpli�ed data access and
manipulation from within R. This includes a direct mapping of standard R data types from binary �les,
as well as an assortment of virtual types that are not directly supported in R, but still need to be accessed.
Examples of these virtual types include single byte integers, four byte �oats, and even more complex
objects like C structs. This paper will focus on working through basic examples as well as give some
comparisons to other solutions available in R that satisfy many of the same objectives.

1

2 Mapping a �le

To create a mapped �le, either the as.mmap or mmap function is used. Files are to be thought of as
homogenous �xed-width byte strings on disk, similar to atomic vectors in R. One exception to this is the
use of the struct type which will be covered later. For now we will begin by mapping atomic vectors.

2.1 as.mmap: memory to disk

To create a �le to use, we will �rst use as.mmap to convert in-memory data into a mapped object. Here
we create a vector of twenty million random numbers, which takes up about 150 MB of memory in an
R session. We'll then convert it into a tempory �le and map it back in using the one function as.mmap.
Note that we reassign to the original variable to free up memory, as it is now persistent on disk.

> library(mmap)

> r <- rnorm(20e6)

> gc()

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 422741 22.6 941004 50.3 532985 28.5

Vcells 20858312 159.2 32627552 249.0 20860488 159.2

> r <- as.mmap(r)

> r

<mmap:/tmp/RtmpH...> (double) num [1:20000000] -0.5604756 -0.2301775 1.558708 ...

> gc()

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 425103 22.8 941004 50.3 532985 28.5

Vcells 863671 6.6 26102042 199.2 20893762 159.5

The as.mmap call simply writes the raw data using R's writeBin to a temporary �le on disk. Internally
this �le is mapped with the appropriate mode corresponding to the R storage mode. Keep in mind that
the data on disk is only a series of bytes. The OS mmap call is indi�erent to the formal `type' o�ering
no facility to convert into a particular C type. By specifying the mode to the R-level mmap call though,
we can now manipulate this �vector on disk� as if it was in memory and of the type we expect. First
we'll extract some elements using standard R semantics, then replace these values. Finally, we will call
munmap to properly free the resources associated with the mapping.

> r[1:10]

[1] -0.56047565 -0.23017749 1.55870831 0.07050839 0.12928774 1.71506499

[7] 0.46091621 -1.26506123 -0.68685285 -0.44566197

> r[87643]

[1] -0.2042827

> head(r)

[1] -0.56047565 -0.23017749 1.55870831 0.07050839 0.12928774 1.71506499

> tail(r)

[1] 0.36987133 -1.19688282 0.41855741 -0.17126741 0.42012201 -0.02442838

> length(r)

[1] 20000000

> r[1:10] <- 1:10

> r[87643] <- 3.14159265

> head(r)

2

[1] 1 2 3 4 5 6

> r[87643]

[1] 3.141593

> munmap(r)

By default, elements are only taken from disk when extracted via a `[' call. This allows for controlled
behavior when dealing with objects that are likely to be many times the available memory. Subsetting
is always required to access the contents of a mapped �le. This is similar to the requirement in C of
dereferencing the pointer to the data, and is in fact what is happening behind the scenes. To unmap the
object and free the system resources, the code must call munmap.

Many instances of mmap usage will be in a read-only capacity, with data already on disk. These data
can come from external processes, or pre-processed by R to be in binary form. To access, a call to mmap

is required.

2.2 mmap: disk to memory

The basic mmap call consists of a �le path as the �le parameter, and specifying the mode of the data
to be returned. The mode argument is unique to the mmap wrapper in R, and it is used to specify how
the raw bytes are to be mapped into R. There are a myriad of supported types and they all strive to
follow the general convention established by R in terms of calling style, namely that provided by the
what argument of scan and readBin: integer() for integers, double() for double/numeric, etc.

The mmap package currently supports sixteen �xed-width (byte count) types, including 1, 8, and 32
bit logicals; 8, 16, and 24-bit signed and unsigned integers; 32 and 64 bit signed integers, �oating point
numbers with 32 and 64-bits, complex numbers (128-bit), �xed and variable width character strings (nul
terminated, as writeBin produces), and single byte char types. Additionally, all types (excluding variable
width characters) may be combined into more complex structures via the struct type in mmap. This is
analogous to a row-based representation where di�erent types are adjacent on disk. This can be thought
of as a data.frame or list in R. Note that struct mappings are unaware of alignment issues, and will
require additional parameters to specify the o�set (accounting for padding, if any) and true length of the
struct (inclusive of padding, if any).

The C-styled types are o�ered for compatability with external programs, as well as to minimizing
disk usage for values of limited range, though there may be performance penalties for non-stanard byte
alignment, so testing is required for maximum performance.

One caveat to the above type availability is that R can only handle a small subset of these on-disk
types natively. All conversions to and from C-types to R-types are carried out in package-level C code,
and types are automatically promoted so as not to lose precision. More discussion of types will follow in
the �Types� section.

To try something a bit more interesting, we'll create some non-standard R data on disk. We'll use
a temporary �le and the writeBin function in base R to alter the size to be 8-bit signed integer values,
�tting 10 integers into 10 bytes on disk.

> tmp <- tempfile()

> writeBin(1:10L, tmp, size=1) # write int as 1 byte

> readBin(tmp, integer(), size=1, signed=TRUE, n=10) # read back in to verify

[1] 1 2 3 4 5 6 7 8 9 10

> file.info(tmp)$size # only 10 bytes on disk

[1] 10

Now that we have our �le, we can map it back into R using the mmap function. All the arguments to
the function are detailed on the help page, and as this relies heavily on the operating system call, it is
advisable to read the related man pages as well for your particular implementation. The key arguments
to consider are the �rst two, �le and mode.

file is the path to the binary data on disk. Recall again that this is only the raw bytestring, no
meta-data is accounted for or should be included. It is possible that header information could be skipped
by utilizing the len and off arguments, but this is outside of expected usage patterns.

3

mode refers to the binary type on disk. This is used by mmap to perform type conversion to and from
R, as well as to correctly manage the atomic length and o�set behavior seen in R when subsets of data
are requested. Refer to the �Virtual Types� table in the following section for details.

> m <- mmap(file=tmp, mode=int8())

> m[]

[1] 1 2 3 4 5 6 7 8 9 10

> nbytes(m)

[1] 10

> munmap(m)

3 Data Types

By design, R makes use of a limited subset of data types internally. These include signed integers (32-
bit), �oating point doubles (64-bit), and complex numbers (128-bit) for numerical computations, as well
as native support for character and raw byte values. There is also a compound type available with list,
which may contain any of the above. This relatively limited selection is quite su�cient for use in R, but
it is sometimes necessary to work with data that may originate as di�erent types or precision. mmap's
mode argument allows for transparent conversion of most common types into the supported R subset
through the use of a virtual class paradigm. The following table describes the currently supported virtual
type support in mmap.

Virtual Types

mmap R C bytes

raw() raw unsigned char 1
char() raw char 1
uchar() raw unsigned char 1

bits() logical bit (32 bit increments) 1
logi8() logical char 1
logi32() logical int 4
logical() logical int 4

int8() integer signed char 1
uint8() integer unsigned char 1
int16() integer signed short 2
uint16() integer unsigned short 2
int24() integer three byte int 3
uint24() integer unsigned three byte int 3
int32() integer int 4
integer() integer int 4

real32() double single precision �oat 4
real64() double double precision �oat 8
double() double double precision �oat 8

cplx() complex complex 16
complex() complex complex 16

char(n) character �xed-width ascii n + 1
character(n) character �xed-width ascii n + 1
cstring() character variable-width ascii variable

struct(...) list struct of above types variable

4

The leftmost column of the table is the constructor function used in mmap to create and describe this
extended collection of types. The �rst sixteen functions are called without parameters and passed as the
mode argument to the mmap constructor. Fixed width character vectors are mapped with a mode char(n),
where n must specify the number of characters in each element of the character mapping. A nul byte
will be automatically assumed to increase the length of each string by one. Variable width character
arrays (akin to C-strings) require no length parameter. The struct function takes any number of other
valid �xed width types from above, and creates a object of class struct. This allows for collections of
disparate types to be organized together in row-major relations.

5

Coercion from one type to another internally will move from least precision to most precision for
extraction, but replacement functions will truncate values without warning. It is up to the user to
determine the minimal precision required, and assure that the values assigned are within this range. A
table of legal value ranges by type is available at the end of this document. A few examples will illustrate
some basic usage.

> # write out a vector of upper case letters as a char * array

> writeBin(LETTERS, tmp)

> let <- mmap(tmp, char(1))

> let

<mmap:/tmp/RtmpH...> (char) chr [1:26] A B C D E F ...

> let[]

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S"

[20] "T" "U" "V" "W" "X" "Y" "Z"

> munmap(let)

> #

> # view the data as a series of bytes instead, using raw()

> let <- mmap(tmp, raw())

> let[]

[1] 41 00 42 00 43 00 44 00 45 00 46 00 47 00 48 00 49 00 4a 00 4b 00 4c 00 4d

[26] 00 4e 00 4f 00 50 00 51 00 52 00 53 00 54 00 55 00 56 00 57 00 58 00 59 00

[51] 5a 00

> munmap(let)

> #

> # view the data as a series of short integers

> let <- mmap(tmp, int16())

> let[]

[1] 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

[26] 90

> munmap(let)

As you can see, the data on disk is simply an array of bytes. This provides maximum �exibility as
there is no associated metadata to keep track of. Byte arrays are architecture dependent but allow for
very simple interprocess communication and extraction.

To make use of data other than a homogenous collection of byte types, we can map a C-style struct
from disk into R's multi-type container, the list. We do this by means of a struct(...) call. For this
example we'll start with an array of struct's on disk that are each composed of a 2-byte integer, a 4-byte
integer, and an 8-byte �oating point double. First we'll need to de�ne our struct, as well as make sure
it has the size we are expecting.

> # 2-byte (int16)

> # 4-byte (int32 or integer)

> # 8-byte float (real64 or double)

> record.type <- struct(short=int16(),int=int32(),double=real64())

> record.type

struct:

(short) integer(0)

(int) integer(0)

(double) double(0)

> nbytes(record.type) # 14 bytes in total

[1] 14

6

Now we can extract individual elements of the array of structs.

> #m <- mmap(tmp, record.type)

> m[1]

$short

[1] 1

$int

[1] 10771

$double

[1] 0.2744104

> m[1:3]

$short

[1] 1 2 3

$int

[1] 10771 718284 862191

$double

[1] 0.2744104 -1.9576911 0.9180086

> m[1:3, "short"]

$short

[1] 1 2 3

> length(m)

[1] 100

As mentioned previously, the result is a mapping to a list. It is also consistent with R that the object
could also be a data.frame. mmap supports a set of hook functions with extractFUN and replaceFUN

to allow for automatic class coercion of mapped objects upon extraction and replacement. This can be
de�ned at the point of mapping, or added later. We'll try this here by converting our list result into a
data.frame instead.

> extractFUN(m) <- function(X) do.call(data.frame, X)

> extractFUN(m)

function(X) do.call(data.frame, X)

As you can see the object now has an extraction hook to enable on-the-�y coercion. This allows
the use of raw bytes on disk (useful for application independent data sharing), while at the same type
exploiting the feature rich language of R. The examples in the package also show how this can be used
for other classes as well, such as Date and POSIXct time. See example(mmap).

> m[1]

short int double

1 1 10771 0.2744104

> m[2:5]

short int double

1 2 718284 -1.9576911

2 3 862191 0.9180086

3 4 858442 0.8048961

4 5 876317 0.7113619

> m[2:5, "double"] # note that subset is on mmap, returning a new data.frame

7

double

1 -1.9576911

2 0.9180086

3 0.8048961

4 0.7113619

> m[2:5, 2]

int

1 718284

2 862191

3 858442

4 876317

> m[1:9][,"double"] # second brackets act on d.f., as the first is on the mmap

[1] 0.2744104 -1.9576911 0.9180086 0.8048961 0.7113619 -0.2964146 -0.3883331

[8] -1.5397795 0.6803943

4 Performance

While there is a certain novelty to being able to use mapped �les within R, the real value comes from
performance gains. This can be seen in three distinct areas: (1) simpli�ed interface to on-disk data, (2)
reduction of memory footprint, and (3) increased throughput. Any combination of the three can be seen
as a bene�t and makes mmap an important tool for high-performance programming.

4.1 Interface Simplicity

Handling large data on disk has always been possible in R using the built-in functions to read chunks of
�les. This is simple in strategy, albeit highly susceptible to errors. Keeping track of o�sets, as well as
freeing memory explicitely in R isn't likely the most optimal use of a developer or analyst's time. mmap
allows for direct access to subsets of data on disk, using standard R subsetting semantics. This allows
for R code to be cleaner, as well as safer.

4.2 Reduced Memory Requirements

The primary motivation to using mmap comes from removing the need to keep an entire data object
in-core at all times. The mmap package allows for direct access to subsets of data on disk, all while
removing the need to have per-process memory allocated to the entire �le.

On small data, this is likely to not be an issue, but as data demands grow beyond available memory
the bene�ts to minimizing a memory footprint grow too. Even when data can �t into memory, it isn't
the data that is needed per se, it is the analytical computations on that data. This puts an upper bound
on data size well short of available memory.

Another facet to mapped �les is in the inherent ability to share data across disparate processes.
By mapping a �le into memory, multiple processes can make use of the same data without requiring
additional resources. Caching, reads, and writes are all managed at the system-level, and as such are
highly optimized. Parallel computations on multicore architectures are simpli�ed through the use of
shared data - albeit with all the risks associated with shared state.

4.3 Increased Throughput

For random access to large data on disk, the underlying mmap system call is as optimal a solution
as modern operating systems o�er. Minimizing the memory footprint in R also reduces the need for
expensive allocation and garbage collections, further increasing performance. mmap also provides for
automatic caching of data, as directed by the OS mechanisms. This typically incurs a small penalty
upon a new chunk of data being read, but can result in faster than in-core performance on recently
accessed data chunks.

8

An additional built in bene�t from mmap objects comes from some simple Ops behavior. As mmap
objects are typically larger than desired for in-memory storage, logical operations will make use of memory
and time reducing techniques to return only matches to queries. The behavior is consistent with the R
code which(x==0) to �nd data that matches some criteria, though operates via the standard Ops based
equility test, namely x==0. This tends to be substantially faster though, as large logical vectors are not
created, reducing both processing time as well as memory use.

> one.to.onemil <- 1:1e6L

> writeBin(1:1e6L, tmp)

> m <- mmap(tmp, int32())

> str(m < 100)

int [1:99] 1 2 3 4 5 6 7 8 9 10 ...

> str(which(one.to.onemil < 100))

int [1:99] 1 2 3 4 5 6 7 8 9 10 ...

> system.time(m < 100)

user system elapsed

0.000 0.000 0.001

> system.time(which(one.to.onemil < 100))

user system elapsed

0.003 0.000 0.002

5 Summary

The mmap package attempts to provide two levels of access to the POSIX system mmap call. One level
o�ers direct byte access, as well as user speci�ed mappings of arguments from R to the system. The
second interface, albeit using the same functions, o�ers a more R-like level of interaction with data on disk,
providing direct byte to R-type extraction and replacement. Whether used for speed, memory reduction,
or simpli�cation of code, the mmap package provides R with one more tool to make programming with
data easier and more robust.

9

Table 1: Typical Valid Ranges By Type (System Dependent)

type minimum maximum

int8 -128 127
uint8 0 255
int16 -32768 32767
uint16 0 65534
int24 -8388608 8388607
uint24 0 16777215
int32 -2147483648 2147483647

10

	Background
	Mapping a file
	as.mmap: memory to disk
	mmap: disk to memory

	Data Types
	Performance
	Interface Simplicity
	Reduced Memory Requirements
	Increased Throughput

	Summary

